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2 OBJECTIVE

The overall objective of this work is to obtain descriptions of scenes from single still images
or video sequences. From 1993 to 1995 the project focused on extracting descriptions of curved
3D objects from aerial intensity images. This work was motivated by the problem of reconstruct-
ing non-rectilinear structures such as oil tanks, cooling towers and domes in airborne

reconnaissance imagery. Shadows of these structures provide constraints that make the problem
tractable.

In 1996 the project focused on generating descriptions of the dynamic behavior of objects in
ground-based video imagery, to address emerging needs for video surveillance in battlefield
awareness. TI event recognition and video indexing capabilities were applied to outdoor infrared
imagery, and extended to support construction of concise descriptions of events and automatic re-
covery of environment structure from observations of human motion.

3 STATUS OF EFFORT

From 1993 to 1995, TI developed theories for shadow analysis and inference of 3D shape of
curved objects. The theories support recovery of object structure from the terminator and sweep
rule of the shadow ribbon. The theory was implemented in the experimental SHADOW system
and demonstrated on a collection of aerial images of curved 3D objects. At the 1996 IU Workshop
TI demonstrated Automatic Video Indexing software using live infrared data, illustrating new ca-
pabilities for video surveillance. Subsequent progress in 1995-96 was delayed by a six-month

funding gap while TI worked with AFOSR and DARPA to align this research with emerging bat-
tlefield awareness needs.

During 1996-1997, TI applied its existing Automatic Video Indexing algorithms to outdoor
infrared images obtained under a variety of illumination conditions. This work demonstrated the
applicability of the algorithms to video surveillance under these conditions, but also revealed the
need for improved modeling of environmental change and target behavior in order to increase the
robustness of the system. TI also applied its real-time event detection and tracking technology to
the problem of building concise descriptions of the motion and appearance of people in indoor
scenes. Finally, TI demonstrated the feasibility of recovering the structure of navigable space
from long-term observations of human motion in the environment.

TI's work on video surveillance and event recognition is continuing under the joint sponsor-

ship of the Office of Research and Development (ORD) and the DARPA Image Understanding
Program.

4 ACCOMPLISHMENTS/NEW FINDINGS

Developed theoretical basis for recovering shapes of curved 3D objects in aerial images: In
this work objects are modeled as straight homogeneous generalized cylinders (SHGCs). SHGCs
are solids formed by sweeping a polygon along a straight orthogonal axis, allowing the polygon to
change scale according to ‘sweep rule’ as it moves. This class of objects describes a wide variety
of building shapes, including cooling towers, oil tanks, domes, pyramids, and smokestacks, as
well as conventional rectilinear buildings with flat roofs. The theory developed in this work ex-
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ploits both the outlines of the object itself and the shadow that the object casts under oblique solar
illumination. The cross-section polygon of the SHGC model is derived from the shadow of the
terminating surface of the object, and the axis and sweep rule of the SHGC are derived from the
length, axis and two-dimensional sweep rule of the shadow.

Derived quasi-invariant constant in the projective geometry of circles: Under orthographic
projection, a circular object such as the roof of an oil tank is imaged as an ellipse. The transition
points of the ellipse are points along the boundary of the ellipse at which the boundary curvature
switches from being less than that of the generating circle to being more than that of the generat-
ing circle. In the course of developing the theory of shadow formation, it was discovered that the
angle between these transition points and the major axis approaches a limiting value of
acos( %)s 54.73° as the tilt of the circle approaches zero. This constant is quasi-invariant in that the
transition point moves only slightly over wide range of viewing angles.

Completed SHADOW software for describing curved 3-D objects: Using theoretical results
from this research, TI developed an experimental software system that automatically processes an
image of an oil tank from an aerial photograph. For cylindrical objects, the software segments the

object-shadow-background, finds the shadow length and height, and produces a texture-mapped
display of the inferred 3-D object.

Demonstrated Automatic Video Indexing of outdoor infrared surveillance video: TI collect-
ed a set of six infrared video sequences of human activity under a variety of imaging conditions.
These sequences were analyzed using TI’s Automatic Video Indexing (AVI) software [Courtney
1997] and results and error rates were recorded. These experiments revealed that the limiting fac-
tor in the system’s performance is its ability to distinguish humans, vehicles, and other objects of
interest from other sources of image change. This is particularly a problem at high ambient tem-
peratures where the thermal contrast between humans and other objects is very low. When
segmentation is successful, the tracking and event recognition algorithms have no difficulty de-
tecting events such as entry or exit from the scene or deposit and removal of objects. Figure 1 of

[Flinchbaugh 1997] (attachment A) shows an example in which the system successfully detected
an intruder emerging from a tree-lined gully.

Developed long-term monitoring system with algorithms for best view selection: Using a pre-
viously developed real-time tracking and event recognition system, TI developed algorithms and
data representations for long-term monitoring of human activity. The algorithms and
representations are embodied in a system that takes one snapshot of each person who enters its
field of view, and stores it in a database along with information about time of entry, participation
in selected events, and path through the scene. The system selects a snapshot using criteria that
favor ‘good’ views of the person, i.e. views in which the person’s face is visible and they are close
to the camera. The database is accessed over computer network using a conventional Web brows-

er, making it easy to review activity in the monitored region. The method and experimental results
are detailed in attachment B.

Demonstrated environment structure learning from observations of human activity: TI ap-
plied its real-time tracking system to the problem of recovering the structure of the monitored
environment. The system observes human activity over a long period (24 hours in our experi-
ments) and records the correlation between the projected size of humans and their positions in the
image. Given that humans have a known height distribution and that they require a solid surface to
stand on, these observations make it possible to infer both the existence of solid surfaces and their



distance from the camera. This allows a surveillance camera to discover the structure of the envi-
ronment it is monitoring without calibration or an externally supplied map. The method and
experimental results are detailed in attachment B.
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concept for real-time security monitoring pf office building environments, using enabling technol-
ogy developed in TI IR&D. This led to the creation of the real-time tracking and event recognition
system used in part of this research.
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Kim has expressed interest in the possibility of applying the long-term monitoring and best view
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in 1997.
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Abstract

This report summarizes recent progress in video
event recognition technology for automatically
monitoring scenes, and outlines objectives of new
research to improve reliability and extend the func-
tionality. TI has demonstrated an event recognition
capability that automatically processes video data
at 10-20 frames per second and reports the events
as they occur during long periods of observation.
For example, as people, vehicles and objects move
in the field of view, the system recognizes when
entities enter and exit the scene, when a person de-
posits an object, when overall Imaging conditions
change, and when someone loiters in a specified
area. The system has been demonstrated using an
infrared video camera in darkness and CCD camer-
as in lighted areas. Ongoing research is enhancing
the reliability of video motion analysis methods for
robust performance in outdoor environments, and
extending event recognition functionality for new
kinds of events. This research will enable net-
worked smart cameras for autonomous situational
awareness of site perimeters, battlefields and other
urban and rural areas where physical security and
safety are primary concerns.

1 Research Objectives

The overall objective of this research is to develop
and demonstrate new video processing methods for
automatically monitoring scenes. Whereas cameras
of today deliver images and video data, smart cam-

The research described in this report is sponsored in part by
the DARPA Image Understanding Program.

eras of the future will deliver information derived
from video data. These smart cameras will commu-
nicate via local and wide area networks to enable
many new capabilities. For defense needs, smart
cameras will autonomously deliver information
about live events to distributed information Sys-
tems that support battlefield awareness in urban
and rural environments. Smart cameras will effec-
tively extend the sight of commanders to remote
areas by accurately drawing attention to important
events in progress.

Specific goals are to develop video surveillance
and monitoring methods to recognize new kinds of
events, to improve the reliability of the moving ob-
ject analysis process, and to demonstrate effective-
ness of the new methods in performing important
tasks. New event recognition methods will classify
motions and interactions of objects into custom
categories that are important for mission-specific
tasks. Robust moving object detection and tracking
is needed to interpret significant changes in video
sequences as entities move in the field of view, es-
pecially amidst video changes caused by variations
in illumination, temperature, wind, and occlusions.

2 Demonstration and Evaluation

Proof-of-concept demonstrations will emphasize
physical security monitoring tasks in and around
urban area buildings. The outdoor experiments will
be of particular importance for battlefield aware-
ness. For example, the infrared image of Figure 1

More information about this research is available at;
http://www.ti.com/research/docs/iuba/index.html



shows a rural monitoring scenario in which a per-
son has emerged from behind a tree and is walking
across a grassy area. Exemplary tasks in this sce-
nario are to reliably determine when a person is in
the field of view, and to count the number of people
who cross the field. To achieve practical demon-
stration goals, a variety of open-ended research is-
sues must be resolved to some extent. What kinds
of events can be recognized using a single video
camera? What contextual information is needed for
reliable video monitoring in a given situation? This
research will contribute new insight while develop-
ing new functionality for smart cameras of the fu-
ture.

Realistic video monitoring tasks will be used to
test new techniques for robust moving object de-
tection and event recognition, with two kinds of
metrics for evaluating progress. Physical security
monitoring experts will be consulted to select
worthwhile new events to recognize, and to provide
feedback about the quality of system performance
compared to current practice. This evaluation will
identify operational advantages of autonomous
video event recognition systems. The primary
quantitative metrics for characterizing performance
are the error rates of event recognition reports. For
example, if the task is to capture a single frontal
view image of each person who loiters in a speci-
fied area, then non-frontal images, extra frontal im-
ages, and no frontal image of a loitering person
would contribute to the error rate.

Figure 1. Autonomous video monitoring of remote
areas draws attention to important events in

~ progress.

3 Autonomous Video Surveillance Progress

In previous TI research [Flinchbaugh and Olson,
1996], several video monitoring techniques were
devised to demonstrate feasibility of tracking peo-
ple and marking their positions on a map display
(Flinchbaugh and Bannon 1994], recognizing
whether a person is holding a box [Rao and Sarwal,
1996], and recognizing some basic actions or
events (enter, exit, deposit, remove, move, rest) of

people and objects in the field of view [Courtney,
1997].

During the past year, an Autonomous Video Sur-
veillance (AVS) system [Olson and Brill, 1997] has
been developed that integrates the previous tech-
niques for the first time, and provides several new
integrated capabilities to monitor TV and infrared
video cameras:

Calibration-Free Image-to-World Mapping:
After an operator specifies approximate correspon-
dences between selected image regions and map
regions, the system estimates 3D locations of ob-
jects in the field of view without solving for the
camera projection matrix or internal calibration pa-
rameters.

User Interface for Multiple Cameras: The map-
based user interface has been extended to operate
as a server for multiple video processors, allowing
the operator to visually monitor tracks and event
reports from multiple cameras, as positions of peo-
ple and objects are dynamically plotted on a map.

Object Analysis: The system classifies objects
that have been deposited in a scene as one of sever-
al known object types (e.g., box, briefcase, and
notebook) or as an unknown object.

Contextual Alarms: The alarm monitoring sys-
tem allows alarms to be conditioned on type of
event, location, time of day, and the type of object
involved in the event.

Best-View Selection: This method assesses the
relative quality of two views of a person in a video
sequence. This allows a video monitoring system
to select and save a single high-quality digital
snapshot of each person that enters the field of
view.



Real-Time Operation Without Special Hard-
ware: All of the above capabilities except object
analysis run at 10-20 frames per second on a con-
ventional workstation. This capability enables
long-term experiments that were previously not

feasible, and improves tracking and event recogni-
tion reliability.

The AVS system has been used to demonstrate fea-
sibility of generating real-time alarms for specified
events in three security monitoring  scenarios.
These demonstrations illustrate how physical secu-
rity can be partially automated to monitor hallway,
office, and building perimeter areas. In each area, a
camera provides live video data of scenes in the
field of view, while the AVS system monitors the
video to analyze events and signal alarms.

Hallway Monitoring: Consider the scenario illus-
trated in Figure 2. The AVS system detects and
tracks people as they walk in office building hall-
ways. Alarms are interactively defined for condi-
tions such as when someone loiters in a specified
area or enters a particular office. Autonomous visu-
al assessment provides information to augment
other information, such as biometric access control
information at building entrance points.

Figure 2. In a hallway monitoring demonstration,
the AVS system tracks people and signals an alarm
when someone loiters in a specified area.

Room Monitoring: For the room monitoring sce-
nario shown in Figure 3, the AVS system maintains
a situational awareness record of events and signals
alarms for a variety of specified conditions. For ex-
ample, an alarm may be specified for events in
which a person places a briefcase on a table, but

not if the person leaves a box on the floor, Using
contextual information such as time of day and ac-
cess control identification, the system can report
other alarm conditions that are functions of who is
in the room and when.

Perimeter Monitoring: For perimeter monitor-
ing scenarios, an infrared camera is used in a dark
area to provide video data to AVS, illustrating the
ability to monitor areas outside buildings at night.
For example, the AVS system could monitor a
building entrance and signal an alarm if someone
walks by and leaves an object outside the door, as
illustrated in Figure 4), but not if someone loiters
without placing an object on the ground. '

e % @ M
Figure 3. Automatic room monitoring provides
concise reports of activities in the field of view

Figure 4. An outdoor site perimeter surveillance
scenario involves an infrared video camera to
recognize events in darkness
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Abstract

Smart video cameras analyze the video stream and
translate it into a description of the scene in terms
of objects, object motions, and events. This paper
describes a set of algorithms for the core computa-
tions needed to build smart cameras. Together
these algorithms make up the Autonomous Video
Surveillance (AVS) system, a general-purpose
framework for moving object detection and event
recognition. Moving objects are detected using
change detection, and are tracked using first-order
prediction and nearest neighbor matching. Events
are recognized by applying predicates to the graph
formed by linking corresponding objects in succes-
sive frames.The AVS algorithms have been used to
create several novel video surveillance applica-
tions. These include a video surveillance shell that
allows a human to monitor the outputs of multiple
cameras, a system that takes a single high-quality
snapshot of every person who enters its field of
view, and a system that learns the structure of the
monitored environment by watching humans move
around in the scene.

1 Introduction

Video cameras today produce images, which must
be examined by humans in order to be useful. Fu-
ture ‘smart’ video cameras will produce infor-
mation, including descriptions of the environment
they are monitoring and the events taking place in
it. The information they produce may include im-

The research described in this report was sponsored in part by
the DARPA Image Understanding Program.

ages and video clips, but these will be carefully
selected to maximize their useful information con-
tent. The symbolic information and images from
smart cameras will be filtered by programs that ex-
tract data relevant to particular tasks. This filtering
process will enable a single human to monitor hun-
dreds or thousands of video streams.

In pursuit of our research objectives [Flinchbaugh,
1997, we are developing the technology needed to
make smart cameras a reality. Two fundamental ca-
pabilities are needed. The first is the ability to
describe scenes in terms of object motions and in-
teractions. The second is the ability to recognize
important events that occur in the scene, and to
pick out those that are relevant to the current task.
These capabilities make it possible to develop a va-
riety of novel and useful video surveillance
applications.

L.1 Video Surveillance and Monitoring
Scenarios

Our work is motivated by a several types of video
surveillance and monitoring scenarios.

Indoor Surveillance: Indoor surveillance provides
information about areas such as building lobbies,
hallways, and offices. Monitoring tasks in lobbies
and hallways include detection of people deposit-
ing things (e.g., unattended luggage in an airport
lounge), removing things (e.g., theft), or loitering.
Office monitoring tasks typically require informa-
tion about people’s identities: in an office, for
example, the office owner may do anything at any




time, but other people should not open desk draw-
ers or operate the computer unless the owner is
present. Cleaning staff may come in at night to vac-
uum and empty trash cans, but should not handle
objects on the desk.

Outdoor Surveillance: Outdoor surveillance in-
cludes tasks such as monitoring a site perimeter for
intrusion or threats from vehicles (e.g., car bombs).
In military applications, video surveillance can
function as a sentry or forward observer, e.g. by
notifying commanders when enemy soldiers
emerge from a wooded area or cross a road.

In order for smart cameras to be practical for real-
world tasks, the algorithms they use must be ro-
bust. Current commercial video surveillance
systems have a high false alarm rate [Ringler and
Hoover, 1995], which renders them useless for
most applications. For this reason, our research
stresses robustness and quantification of detection
and false alarm rates. Smart camera algorithms
must also run effectively on low-cost platforms, so
that they can be implemented in small, low-power

packages and can be used in large numbers. Study-

ing algorithms that can run in near real time makes
it practical to conduct extensive evaluation and
testing of systems, and may enable worthwhile
near-term applications as well as contributing to
long-term research goals.

1.2 Approach

The first step in processing a video stream for sur-
veillance purposes is to identify the important
objects in the scene. In this paper it is assumed that
the important objects are those that move indepen-
dently. Camera parameters are assumed to be fixed.
This allows the use of simple change detection to
identify moving objects. Where use of moving
cameras is necessary, stabilization hardware and
stabilized moving object detection algorithms can
be used (e.g. [Burt et al, 1989, Nelson, 1991]. The
use of criteria other than motion (e.g., salience
based on shape or color, or more general object
recognition) is compatible with our approach, but
these criteria are not used in our current
applications.

Our event recognition algorithms are based on
graph matching. Moving objects in the image are

tracked over time. Observations of an object in suc-
cessive video frames are linked to form a directed
graph (the motion graph). Events are defined in
terms of predicates on the motion graph. For in-
stance, the beginning of a chain of successive
observations of an object is defined to be an EN-
TER event. Event detection is described in more
detail below.

Our approach to video surveillance stresses 2D,
image-based algorithms and simple, low-level ob-
ject representations that can be extracted reliably
from the video sequence. This emphasis yields a
high level of robustness and low computational
cost. Object recognition and other detailed analy-
ses are used only after the system has determined
that the objects in question are interesting and mer-
it further investigation.

1.3 Research Strategy

The primary technical goal of this research is to de-
velop general-purpose algorithms for moving
object detection and event recognition. These algo-
rithms comprise the Autonomous Video
Surveillance (AVS) system, a modular framework
for building video surveillance applications. AVS
is designed to be updated to incorporate better core
algorithms or to tune the processing to specific do-
mains as our research progresses.

In order to evaluate the AVS core algorithms and
event recognition and tracking framework, we use
them to develop applications motivated by the sur-
veillance  scenarios described above. The
applications are small-scale implementations of fu-
ture smart camera systems. They are designed for
long-term operation, and are evaluated by allowing
them to run for long periods (hours or days) and
analyzing their output.

The remainder of this paper is organized as fol-
lows. The next section discusses related work.
Section 3 presents the core moving object detection
and event recognition algorithms, and the mecha-
nism used to establish the 3D positions of objects.
Section 4 presents applications that have been built
using the AVS framework. The final section dis-

cusses the current state of the system and our
future plans.




2 Related Work -

Our overall approach to video surveillance has
been influenced by interest in selective attention
and task-oriented processing [Swain and Stricker,
1991, Rimey and Brown, 1993, Camus et al.,
1993]. The fundamental problem with current vid-
eo surveillance technology is that the useful
information density of the images delivered to a
human is very low; the vast majority of surveil-
lance video frames contain no useful information
at all. The fundamental role of the smart camera
described above is to reduce the volume of data
produced by the camera, and increase the value of
that data. It does this by discarding irrelevant
frames, and by expressing the information in the
relevant frames primarily in symbolic form.

2.1 Moving Object Detection

Most algorithms for moving object detection using
fixed cameras work by comparing incoming video
frames to a reference image, and attributing signifi-
cant differences either to motion or to noise. The
algorithms differ in the form of the comparison op-
erator they use, and in the way in which the
reference image is maintained. Simple intensity
differencing followed by thresholding is widely
used [Jain et al., 1979, Yalamanchili et al., 1982,
Kelly et al., 1995, Bobick and Davis, 1996, Court-
ney, 1997] because it is computationally
inexpensive and works quite well in many indoor
environments. Some algorithms provide a means of
adapting the reference image over time, in order to
track slow changes in lighting conditions and/or
changes in the environment [Karmann and von
Brandt, 1990, Makarov, 1996a). Some also filter
the image to reduce or remove low spatial frequen-
Cy content, which again makes the detector less
sensitive to lighting changes [Makarov et al.,
1996b, Koller et al., 1994].

Recent work [Pentland, 1996, Kahn et al., 1996]
has extended the basic change detection paradigm
by replacing the reference image with a statistical
~model of the background. The comparison operator
becomes a statistical test that estimates the proba-
bility that the observed pixel value belongs to the
background.

Our baseline change detection algorithm uses
thresholded absolute differencing, since this works
well for our indoor surveillance scenarios. For ap-
plications where lighting change is a problem, we
use the adaptive reference frame algorithm of Kar-
mann and von Brandt [1990]. We are also
experimenting with a probabilistic change detector
similar to Pfinder [Pentland, 1996.

Our work assumes fixed cameras. When the cam-
era is not fixed, simple change detection cannot be
used because of background motion. One approach
to this problem is to treat the scene as a collection
of independently moving objects, and to detect and
ignore the visual motion due to camera motion
(e.g. Burt et al., 1989] Other researchers have pro-
posed ways of detecting features of the optical flow
that are inconsistent with a hypothesis of self mo-
tion [Nelson, 1991].

In many of our applications moving object detec-
tion is a prelude to person detection. There has
been significant recent progress in the development
of algorithms to locate and track humans. Pfinder
(cited above) uses a coarse statistical model of hu-
man body geometry and motion to estimate the
likelihood that a given pixel is part of a human.
Several researchers have described methods of
tracking human body and limb movements [Gavri-
la and Davis, 1996, Kakadiaris and Metaxas, 1996]
and locating faces in images [Sung and Poggio,
1994, Rowley et al.,, 1996)]. Intille and Bobick
[1995] describe methods of tracking humans
through episodes of mutual occlusion in a highly
structured environment. We do not currently make
use of these techniques in live experiments because
of their computational cost. However, we expect
that this type of analysis will eventually be an im-
portant part of smart camera processing.

2.2 Event Recognition

Most work on event recognition has focussed on
events that consist of a well-defined sequence of
primitive motions. This class of events can be con-
verted into spatiotemporal patterns and recognized
using statistical pattern ‘matching techniques. A
number of researchers have demonstrated algo-
rithms for recognizing gestures and sign language
[e.g., Stamer and Pentland, 1995]. Bobick and
Davis [1996] describe a method of recognizing ste-
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Figure 1: Image processing steps for moving object detection.

reotypical motion patterns corresponding  to
actions such as sitting down, walking, or waving.

Our approach to event recognition is based on the
video database indexing work of Courtney [1997],
which introduced the use of predicates on the mo-
tion graph to represent events. Motion graphs are
well suited to representing abstract, generic events
such as ‘depositing an object’ or ‘coming to rest’,
which are difficult to capture using the pattern-
based approaches referred to above. On the other
hand, pattern-based approaches can represent com-
plex motions such as ‘throwing an object’ or
‘waving’, which would be difficult to express using
motion graphs. It is likely that both pattern-based
and abstract event recognition techniques will be
needed to handle the full range of events that are of
interest in surveillance applications.

3 AVS Tracking and Event Recognition
Algorithms

This section describes the core technologies that
provide the video surveillance and monitoring ca-
pabilities of the AVS system. There are three key
technologies: moving object detection, visual
tracking, and event recognition. The moving object
detection routines determine when one or more ob-
jects enter a monitored scene, decide which pixels
in a given video frame correspond to the moving
objects versus which pixels correspond to the back-
ground, and form a simple representation of the
object’s image in the video frame. This representa-
tion is referred to as a motion region, and it exists
in a single video frame, as distinguished from the

world objects which exist in the world and give rise

to the motion regions.

Visual tracking consists of determining correspon-

dences between the motion regions over a

sequence of video frames, and maintaining a single
representation, or track, for the world object which
gave rise to the sequence of motion regions in the
sequence of frames. Finally, event recognition is a
means of analyzing the collection of tracks in order
to identify events of interest involving the world
objects represented by the tracks.

3.1 Moving Object Detection

The moving object detection technology we em-
ploy is a 2D change detection technique similar to
that described in Jain et al. [1979] and Yalaman-
chili et al [1982]. Prior to activation of the
monitoring system, an image of the background,
i.e., an image of the scene which contains no mov-
ing or otherwise interesting objects, is captured to
serve as the reference image. When the system is in
operation, the absolute difference of the current
video frame from the reference image is computed
to produce a difference image. The difference im-
age is then thresholded at an appropriate value to
obtain a binary image in which the “off” pixels rep-
resent background pixels, and the “on” pixels
represent “moving object” pixels. The four-con-
nected components of moving object pixels in the
thresholded image are the motion regions (see Fig-
ure 1).

Simple application of the object detection proce-
dure outlined above results in a number of errors,
largely due to the limitations of thresholding. If the
threshold used is too low, camera noise and shad-
ows will produce spurious objects; whereas if the
threshold is too high, some portions of the objects
in the scene will fail to be separated from the back-




ground, resulting in breakup, in which a single
world object gives rise to several motion regions
within a single frame. Our general approach is to
allow breakup, but use grouping heuristics to
merge multiple connected components into a single
motion region and maintain a one-to-one corre-
spondence between motion regions and world
objects within each frame.

One grouping technique we employ is 2D morpho-
logical dilation of the motion regions. This enables
the system to merge connected components sepa-
rated by a few pixels, but using this technique to
span large gaps results in a severe performance
degradation. Moreover, dilation in the image space
may result in incorrectly merging distant objects
which are nearby in the image (a few pixels), but
are in fact separated by a large distance in the
world (a few feet).

If 3D information is available, the connected com-
ponent grouping algorithm makes use of an
estimate of the size (in world coordinates) of the
objects in the image. The bounding boxes of the
connected components are expanded vertically and
horizontally by a distance measured in feet (rather
than pixels), and connected components with over-
lapping bounding boxes are merged into a single
motion region. The technique for estimating the
size of the objects in the image is described in sec-
tion 3.4 below.

3.2 Tracking

The function of the AVS tracking routine is to es-
tablish correspondences between the motion
regions in the current frame and those in the previ-
ous frame. We use the technique of Courtney
[1997], which proceeds as follows. First assume
that we have computed 2D velocity estimates for
the motion regions in the previous frame. These ve-
locity estimates, together with the locations of the
centroids in the previous frame, are used to project
the locations of the centroids of the motion regions
into the current frame. Then, a mutual nearest-
neighbor criterion is wused to establish
correspondences.

Let P be the set of motion region centroid loca-
tions in the previous frame, with p; one such
location. Let p'; be the projected location of p ; in

the current frame, and let  be the set of all such
projected locations in the current frame. Let C be
the set of motion region centroid locations in the
current frame. If the distance between p'; and
¢; € C is the smallest for all elements of C , and
this distance is also the smallest of the distances
between ¢; and all elements of P' (i.e., p'; and ¢;
are mutual nearest neighbors), then establish a cor-
respondence between p ; and ¢; by creating a
bidirectional strong link between them. Use the dif-
ference in time and space between p; and c; to
determine a velocity estimate for ¢;, expressed in
pixels per second. If there is an existing track con-
taining p ;»add ¢; toit. Otherwise, establish a new
track, and add both p; and c; toit.

The strong links form the basis of the tracks with a
high-confidence of their correctness. Video objects
which do not have mutual nearest neighbors in the
adjacent frame may fail to form correspondences
because the underlying world object is involved in
an event (e.g., enter, exit, deposit, remove). In or-
der to assist in the identification of these events,
objects without strong links are given unidirection-
al weak links to the their (non-mutual) nearest
neighbors. The weak links represent potential am-
biguity in the tracking process.The motion regions
in all of the frames, together with their strong and
weak links, form a motion graph.

Figure 2 depicts a sample motion graph. In the fig-
ure, each frame is one-dimensional, and is
represented by a vertical line (FO - F18). Circles
represent objects in the scene, the dark arrows rep-
resent strong links, and the gray arrows represent
weak links. An object enters the scene in frame F1,
and then moves through the scene until frame F4,
where it deposits a second object. The first object
continues to move through the scene, and exits at
frame F6. The deposited object remains stationary.
At frame F8 another object enters the scene, tem-
porarily occludes the stationary object at frame
F10 (or is occluded by it), and then proceeds to
move past the stationary object. This second mov-
ing object reverses directions around frames F13
and F14, returns to remove the stationary object in
frame F16, and finally exits in frame F17. An addi-
tional object enters in frame F5 and exits in frame
F8 without interacting with any other object.

As indicated by the striped fill patterns in Figure 2,
the correct correspondences for the tracks are am-
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Figure 2: Event detection in the motion graph.

biguous after object interactions such as the
occlusion in frame F10. The AVS system resolves
this ambiguity where possible by preferring to
match moving objects with moving objects, and
stationary objects with stationary objects. The dis-
tinction between moving and stationary tracks is
computed using thresholds on the velocity esti-
mates, and hysteresis for stabilizing transitions
between moving and stationary.

Following an occlusion (which may last for several
frames) the frames immediately before and after
the occlusion are compared (e.g., frames F9 and
F11 in Figure 2). The AVS system examines each
stationary object in the pre-occlusion frame, and
searches for its correspondent in the post-occlusion
frame (which should be exactly where it was be-
fore, since the object is stationary). This procedure
resolves a large portion of the tracking ambiguities.
General resolution of ambiguities resulting from
multiple moving objects in the scene is a topic for
further research. The AVS system may benefit
from inclusion of a “closed world tracking” facility
such as that described by Intille and Bobick
[1995a, 1995b].

3.3 Event Recognition

Certain features of tracks and pairs of tracks corre-
spond to events. For example, the beginning of a
track corresponds to an ENTER event, and the end
corresponds to an EXIT event. In an on-line event
detection system, it is preferable to detect the event

as near in time as possible to the actual occurrence
of the event. The previous system which used mo-
tion graphs for event detection [Courtney, 1997]
operated in a batch mode, and required multiple
passes over the motion graph, precluding on-line
operation. The AVS system detects events in a sin-
gle pass over the motion graph, as the graph is
created. However, in order to reduce errors due to
noise, the AVS system introduces a slight delay of
n frame times (n=3 in the current implementation)
before reporting certain events. For example, in
Figure 2, an enter event occurs on frame F1. The
AVS system requires the track to be maintained for
n frames before reporting the enter event. If the
track not maintained for the required number of
frames, it is ignored, and the enter event is not re-
ported, e.g., if n > 4, the object in Figure 2 which
enters in frame F5 and exits in frame F8 will not
generate any events.

A track that splits into two tracks, one of which is
moving, and the other of which is stationary, corre-
sponds to a DEPOSIT event. If a moving track
intersects a stationary track, and then continues to
move, but the stationary track ends at the intersec-
tion, this corresponds to a REMOVE event. The
remove event can be generated as soon as the re-
mover disoccludes the location of the stationary
object which was removed, and the system can de-
termine that the stationary object is no longer at
that location.




Figure 3: Establishing the image to map coordinate transformation

In a manner similar to the occlusion situation de-
scribed above in section 3.2, the deposit event also
gives rise to ambiguity as to which object is the de-
positor, and which is the depositee. For example, it
may have been that the object which entered at
frame F1 of Figure 2 stopped at frame F4 and de-
posited a moving object, and it is the deposited
object which then proceeded to exit the scene at
F6. Again, the AVS system relies on a moving vs.
stationary distinction to resolve the ambiguity, and
insists that the depositee remain stationary after a
deposit event. The AVS system requires both the
depositor and the depositee tracks to extend for n
frames past the point at which the tracks separate
(e.g., past frame F5 in Figure 2), and that the de-
posited object remain stationary; otherwise no
deposit event is generated.

Also detected (but not illustrated in Figure 2), are
REST events (when a moving object comes to a
stop), and MOVE events (when a RESTing object
begins to move again). Finally, one further event
that is detected is the LIGHTSOUT event, which
occurs whenever a large change occurs over the en-
tire image. The motion graph need not be consulted
to detect this event.

3.4 Image to World Mapping

In order to locate objects seen in the image with re-
spect to a map, it is necessary to establish a
mapping between image and map coordinates. This
mapping is established in the AVS system by hav-
ing a user draw quadrilaterals on the horizontal
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surfaces visible in an image, and the corresponding
quadrilaterals on a map, as shown in Figure 3. A
warp transformation from image to map coordi-
nates is constructed using the quadrilateral
coordinates.

Once the transformations are established, the sys-
tem can estimate the location of an object (as in
Flinchbaugh and Bannon [1994]) by assuming that
all objects rest on a horizontal surface. When an
object is detected in the scene, the midpoint of the
lowest side of the bounding box is used as the im-
age point to project into the map window using the
quadrilateral warp transformation [Wolberg, 1990].

4 Applications

The AVS core algorithms described in section 3
have been used as the basis for several video sur-
veillance applications. Section 4 describes three
applications that we have implemented: situational
awareness, best-view selection for activity logging,
and environment learning.

4.1 Situational Awareness

The goal of the situational awareness application is
to produce a real-time map-based display of the lo-
cations of people, objects and events in a
monitored region, and to allow a user to specify
alarm conditions interactively. Alarm conditions
may be based on the locations of people and ob-
jects in the scene, the types of objects in the scene,
the events in which the people and objects are in-
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Figure 5: User interface for specifying a monitor in AVS

volved, and the times at which the events occur.
Furthermore, the user can specify the action to take
when an alarm is triggered, e.g., to generate an au-
dio alarm or write a log file. For example, the user
should be able to specify that an audio alarm
should be triggered if a person deposits a briefcase
on a given table between 5:00pm and 7:00 am on a
weeknight.

The architecture of the AVS situational awareness
system is depicted in Figure 4. The system consists
of one or more smart cameras communicating with
a Video Surveillance Shell (VSS). Each camera has
associated with it an independent AVS core engine
that performs the processing described in section 3.
That is, the engine finds and tracks moving objects
in the scene, maps their image locations to world
coordinates, and recognizes events involving the
objects. Each core engine emits a stream of loca-
tion and event reports to the VSS, which filters the
incoming event streams for user-specified alarm
conditions and takes the appropriate actions.
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Figure 4: The situational awareness system

In order to determine the identities of objects (e.g.,
briefcase, notebook), the situational awareness sys-
tem communicates with one or more object
analysis modules (OAMs). The core engines cap-
ture snapshots of interesting objects in the scenes,
and forward the snapshots to the OAM, along with
the IDs of the tracks containing the objects. The
OAM then processes the snapshot in order to deter-
mine the type of object. The OAM processing and
the AVS core engine computations are asynchro-
nous, so the core engine may have processed
several more frames by time the OAM completes
its analysis. Once the analysis is complete, the
OAM sends the results (an object type label) and
the track ID back to the core engine. The core en-
gine uses the track ID to associate the label with
the correct object in the current frame (assuming
the object has remained in the scene and been suc-
cessfully tracked).

The VSS provides a map display of the monitored
area, with the locations of the objects in the scene
reported as icons on the map. The VSS also allows
the user to specify alarm regions and conditions.
Alarm regions are specified by drawing them on
the map using a mouse, and naming them as de-
sired. The user can then specify the conditions and
actions for alarms by creating one or more moni-
tors. Figure 5 depicts the monitor creation dialog
box. The user names the monitor and uses the
mouse to select check boxes associated with the
conditions that will trigger the monitor. The user
selects the type of event, the type of object in-
volved in the event, the day of week and time of
day of the event, where the event occurs, and what
to do when the alarm condition occurs. The moni-
tor specified in Figure 5 specifies that a voice alarm
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Figure 6: Tracking an object in the scene on the map

will be sounded when a briefcase is deposited on

Table_A between 5:00pm and 7:00am on a week-

night. The voice alarms are customized to the event

and object type, so that when this alarms is trig-

gered, the system will announce “deposit box” via

its audio output. Figure 6 shows a person about to
trigger this alarm.

5 Best-View Selection for Activity Logging

In many video surveillance applications the goal of
surveillance is not to detect events in real time and
generate alarms, but rather to-construct a log or au-
dit trail of all of the activity that takes place in the
camera’s field of view. This log is examined by in-
vestigators after a security incident (e.g., a theft or
terrorist attack), and is used to identify possible
suspects or witnesses.

In order to gain experience with this type of appli-
cation, we have used the tracking and event
detection capabilities described in section 3 to con-
struct a program that monitors and records the
movements of humans in its field of view. For ev-
ery person that it sees, it creates a log file that
summarizes important information about the per-
son, including a snapshot taken when the person
was close to the camera and (if possible) facing it.
The log files are made available to authorized users
via the World-Wide Web.

5.1 Architecture

The application makes use of the AVS core algo-
rithms to detect and track people. Upon detection
of a track corresponding to a person in the input,
the tracker associates a data record with the track.
The data record contains a summary of information
about the person, including a snapshot extracted
from the current video image. As the person is
tracked through the scene, the tracker examines
each image of that person that it receives. If the
new image is a better view of the person than the
previously saved snapshot, the snapshot is replaced
with the new view. When the person leaves the
scene, the data record is saved to a file.

Each log entry file records the time when the per-
son entered the scene and a list of coordinate pairs
showing their position in each video frame. Each
log entry file also contains the snapshot that was
stored in the track record for the person when they
exited the scene. Because of the way snapshots are
maintained, the final snapshot is the best view of
the person that the system had during tracking. Fi-
nally, the log entry file contains a pointer to the
reference image that was in effect when the snap-
shot was taken. This information forms an

‘extremely concise description of the person’s

movements and appearance while they were in the
scene.

Selecting the best view: The -system uses simple
heuristics to decide when the current view of a per-
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Figure 7: Floor plan of area used for hallway monitoring experiments. Camera is located at right and
monitors the hallway and printer alcove.

son is better than the previously saved view. First,
the new view is considered better if the subject is
moving toward the camera in the current frame,
and was moving away in the previously saved
view. This causes the system to favor views in
which the subject’s face is visible. If this rule does
not apply, the new view is considered better if the
subject appears to be larger (subtends a larger visu-
al angle). This causes the system to prefer views in
which the subject is close to the camera. Other pos-
sible view selection heuristics are discussed in
Kelly et al. [1995].

Handling background change: The test environ-
ment experiences significant lighting variation
during the day due to window lighting, opening
and closing doors etcetera. In addition, during the
day people frequently deposit, remove, or reposi-
tion objects in the scene. This creates permanent
regions of difference between the scene and the
reference image. Without some mechanism for up-
dating the reference image, the system would
continue to track these difference regions as ob-
jects. Therefore, the tracker was instructed to
discard the current tracks and grab a new reference
image whenever it determined that all objects in
the scene were stationary, and that no object had
 moved for several seconds.

User Interface

Log files are saved in a directory tree associated
with the camera that produced the data. Along with
the log files, the monitoring application creates
HTML documents that allow a web browser to
navigate the directory tree and access the log en-

tries. Log entries are displayed by a Java applet that
displays the best snapshot of the person in the con-
text of the reference image, and overlays the
person’s path through the scene on the image. The
applet runs as an independent thread that checks
periodically to see if any new log entries have been
created. Thus if the user is browsing the entries for
the current day, new entries become available to
the browser as soon as they occur.

5.2 Experiments

The system described above was tested in a hall-
way of our laboratory. Figure 7 shows the hallway
floor plan. The camera is mounted in the hallway
ceiling and looks west toward a window-lit corri-
dor that runs around the perimeter of the building.
The hallway experiences heavy traffic, because it
contains a laser printer, a copier, and the office wa-
ter cooler. The hallway passes under the camera
and continues to the east out of the field of view.

The system was allowed to run for a total of 118
hours over a period of a week. Most laboratory per-
sonnel were unaware that a test was in progress, so
the system was exposed to normal daily activity.
During the test the system recorded a total of 965
log entries. Figure 8 shows the browser display for
a typical log entry. In this sequence the subject en-
tered the scene from the cross corridor at rear and
came down the hallway on his way to the copier,
out of view at lower right. His path is shown as a
line on the floor, which appears red when viewed
with a color browser.
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Figure 8: Log entry browser interface. The line drawn on the floor in the upper image shows the sub-
ject’s path from entry to exit. The list entry selected at left is the time at which the image was taken.

Figure 9 demonstrates the effect of the system’s  and took a few steps back toward the camera, then
preference for frontal views. In this sequence the  turned away again and continued down the hall-
subject entered at the bottom of the scene and  way, eventually exiting via the first door on the left.
walked away from the camera. He turned around  Although the subject’s back was toward the camera



most of the time, the view preference heuristics se-
lected a view taken while he was facing the
camera.

Performance Evaluation

In order to assess the performance of the monitor-
ing application, all of the log entries for the
experiment period were examined and scored by
one of the authors. Entries were classified as
follows:

Face/Non-face: Entries containing a view of a sub-
ject’s head were classified as FACES if the
subject’s face (specifically, subject’s nose) was vis-
ible, otherwise they were classified as
NONFACES.

False Alarm: Images which contained no human
and appeared to be caused by noise were classified
as FALSE ALARMS.

Bad Path: Entries in which the floor trace is clear-

ly corrupt in some way were classified as BAD
PATH:s.

Bad Choice: In some cases it is clear from the
floor trace that the system made a poor choice of
which image of a person to save in the log entry.
These entries were classified as BAD CHOICE.

False Negative: In some cases it is clear that the
system failed to take a usable picture of a person
who was in the scene. These were classified as
FALSE NEGATIVES. About half of the false neg-
atives occurred when the system selected a view in
which the subject’s head is not visible, typically
because they were in the act of passing through a
doorway. The others occurred when the system be-
came confused by occlusion, and incorrectly
grouped two people into a single log entry. Note
that we do not have ground truth for the observa-
tion period, so there may have been other detection
failures that were not detected. However, monitor-
ing by the authors during the daytime revealed no
failures of this type. We believe that the FALSE
NEGATIVE count is a good estimate of the num-
ber of detection failures.

Table 1 shows the classification counts for the test
period. Assuming that the false negative count is

PSL Hallway Traffic for 2/20/97

Figure 9: Log entry showing the effect of the view selection heuristic preference for frontal views. The
subject was walking away from the camera for most of this sequence, but the system was able to cap-
ture a view while he was facing the camera.




Table 1: Long-term monitoring system

performance
log entry type Numb.e r of
entries
FACE 493
NONFACE 380
FALSE ALARM 62
FALSE NEGATIVE 44
BAD PATH 112
BAD CHOICE 29
TOTAL ENTRIES 965

valid, the system achieved a detection rate of
95.2% with a false alarm rate of 6.4%. The record-
ed path of the subject was correct (or at least
plausible) in 88.4% of entries, and the system
made conspicuously bad choices of what image to
save in only 3% of entries.

Of the valid images of humans, 56.6% showed the
subject’s face, vs. 43.4% that did not. Note that in
most cases where the image does not show the
face, the subject entered the scene from below the
camera and walked away from it, so there was nev-
er an opportunity for a frontal view. Earlier
experiments without the frontal view heuristic cap-
tured FACE and NONFACE images with roughly
equal frequency, so the it is clear that the heuristic
helps.

At the end of the experiment, the camera directory
occupied 34.5 megabytes, or about seven mega-
bytes per day of monitoring. Almost all of the
storage consists of image files, so presumably com-
pression with an image-specific algorithm would
produce substantial savings. Use of an MPEG-like
algorithm on the reference images would be ex-
tremely effective, since the reference images are all
very nearly identical, and lossless compression
would not be necessary.

6 Learning Environment Structure

The AVS tracking and event recognition software
uses corresponding rectangles in image and world
coordinates to compute an approximate image-to-
world mapping. These rectangles are created by a
human when the camera system is set up. In many
situations it would be preferable to eliminate even
this minimal calibration step, in order to reduce
setup cost to a minimum.

We have developed a system that learns the image-
to-world mapping by watching humans move
around in the scene. Changes in the apparent size
and position of humans in the image provide infor-
mation about the existence and depth of world
surfaces. Appearance and disappearance of hu-
mans provides information about occlusion
boundaries and locations where humans can enter
or exit the scene.

6.1 Method

The computation assumes weak perspective pro-
jection, i.e. that objects in the scene are first
projected orthographically to a plane passing
through a reference point on the object and parallel
to the image plane, and then projected to the image
plane using true perspective. It is also assumed that
humans are usually in contact with a world surface
that supports them, that the camera is in an upright
position (has roll angle zero), and that the internal
calibration parameters of the camera are known.

More precisely, assume front projection with the
camera focal point at the origin and looking down
the Z axis of a left-handed coordinate system. Sup-
pose the camera observes a person in the world
with head at world point ¥ = (X, Y, Z,) and feet
at world point F. Let F be the reference point for

weak perspective projection. Then the apparent
height of the person in the image is given by

where 6 is the camera tilt angle relative to the lo-
cal vertical direction. Solving for depth gives

The person’s height |H - Fl has a known probabili-
ty distribution, and the tilt angle term cosé can be




Figure 10: Apparent height data collected in the

experiment. Cell intensity is the median of the

image heights of observed humans when their

feet were imaged in the cell. Dark grey regions
contain no data.

estimated from the appearance of the person, or
simply ignored for the shallow tilt angles typical of
security camera installations. Given enough obser-
vations, the equation can be used to estimate the
distance from the camera to points in the world
where people commonly walk.

The idea of recovering structure from observed siz-
es of humans is conceptually related to shape-
from-texture work in which the texture is made up
of discrete elements that are uniform in size and
shape [Aloimonos and Swain, 1988, Blostein and
Ahuja, 1989]. In this case the texels (people) do not
lie in the imaged surface, and their size in the
world is known. This makes depth recovery sub-

stantially easier than it is in general shape-from-
texture work.

6.2 Mapping the Environment

The equation derived above has been used in a pro-
gram that learns the structure of its environment by
watching humans move around in it. The program
makes use of the AVS core algorithms to detect and
track people. Over time, it builds up an image in
which pixel value represents depth to the nearest
world surface in the corresponding direction.

The camera image is partitioned into a grid of
16x16-pixel squares, each of which is associated
with a histogram. Whenever the program detects a
person in the scene, it locates the histogram associ-

ated with the place where they are standing, i.e.,
the one associated with the square containing the
bottom center of the motion region for the person.
The apparent height of the person is recorded in
that histogram. Over time, the histogram for each
location in the image builds up a sample distribu-
tion for the apparent (image) height of humans at
that location. This can be used with the equation
derived previously to estimate the depth at that
point.

The program was allowed to operate for twenty-
four hours during a typical working day. Input was
provided by the hallway camera used in section 5.
Figure 10 shows the raw output of the program. In
the figure pixel intensity corresponds to the median
observed height for the corresponding location.
Dark grey pixels are those for which no observa-
tions were recorded. The program was instructed to
discard observations in which the motion region
for the person touched the upper or lower image
border, since the apparent height is invalid in that
condition. For this reason, there are no counts for
the end of the hallway.

The height data of Figure 10 were converted to
depths using the equation derived above. Vertical
pixel pitch was taken from the camera technical
manual, and the nominal lens focal length was used
to approximate the true focal length. Histogram
cells for which fewer than ten total observations
were recorded were discarded.

Figure 11 shows the final depth map superimposed
on the image. The range estimates cover image re-
gions corresponding to the floor, and vary
smoothly over most of the image. Anomalously
large values occur in several locations at right cen-
ter below the small printer and workstation. These
errors occur because the office chair is frequently
moved around in this region, and the system some-
times mistakes it for a person. Since it is
significantly smaller than a real person, the system
interprets it as evidence that the floor supporting it
is further away than it actually is. A similar prob-
lem produces the anomalously high value of 8.9
meters at left center, at the base of the doorway. It
frequently happens that as a person exits the hall
via the doorway, their head goes out of sight while
their body and feet are still visible. The system
records the height of the visible portion of the per-
son in the cell at the base of the doorway. Since this
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Figure 12: Ground truth range values for comparison with figure 11.

value is smaller than the true height of the person,
that cell appears to be further away than it really is.

In order to assess the accuracy of the recovered
depth map, we measured the distance from the
camera to seven points on the floor. The seven
points and their distances from the camera are

shown superimposed on the image in figure 12. Ta-
ble 2 shows the estimated and actual ranges to the
test points, as well as the error in meters. The aver-
age absolute error for the seven test points is 26cm,
which is less than 5% of the average distance.




Table 2: Estimated vs. Actual Range
(meters) to ground truth points

. estimate actual error
potnt (meters) (meters) (meters)
A 4.70 4.80 -0.10
B 5.00 5.40 -0.40
C 5.90 5.89 0.01
D 6.10 6.45 -0.35
E 6.80 7.26 -0.46
F 1.70 8.18 -0.48
G 9.80 9.85 -0.05

7 Conclusion

The goal of our research is to develop algorithms
and systems that can be used to describe a video
sequence in terms of moving objects and events.
These algorithms will enable a generation of smart
cameras that deliver information about scenes rath-
er than raw images. We have created a set of core
algorithms comprising the Autonomous Video Sur-
veillance (AVS) system, including routines for
moving object detection, tracking, and abstract
event recognition. The AVS system has been used
to create several surveillance applications, includ-
ing a video surveillance shell, a program that
creates concise logs of activity in the field of view,
and a program that learns scene structure by watch-
ing humans moving around in the environment.

- Our future work on AVS will address weaknesses
in the current system, and will add new capabilities
that support more complex applications. Work is
planned in three main areas:

Robust Change Detection and Tracking: Experi-
ments have shown that errors in the moving object
detection computation are the most common cause
of errors in our applications. This is particularly a
problem in outdoor environments. We plan to de-
velop new change detection algorithms based on
dynamic background models that capture the way
the background changes over time. We will also
exploit contextual information to predict the ex-

pected size and appearance of moving objects in
the scene.

Improved Event Recognition: We will extend our
motion-graph-based event recognition algorithms
to a broader range of events, and will develop
methods of specifying and recognizing compound
events and event sequences.

Applications: We will extend the existing video
surveillance shell to make use of authentication
sensors, and to distinguish between authorized and
unauthorized individuals. We will continue to use
AVS technology to develop applications that ad-
dress- military and other government video
surveillance needs.
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